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Composite indicator development using utility
function and fuzzy theory
S-K Lee and J-H Yu�

Kwangwoon University, Seoul, South Korea

Construction companies use composite indicators (CIs) to evaluate their overall project performance.
However, the conventional methodology of CIs development causes indiscrimination, relative
calibration, and redundancy. To address these problems, we propose a novel methodology that uses
fuzzy theories. The proposed methodology includes a utility function for normalizing, a fuzzy measure
for weighting, and a fuzzy integral for aggregating. We conducted a case study to assess the quality of the
proposed methodology versus the alternative methodologies on 25 real projects of a construction
company. The result showed that the measurement reliability of the proposed normalization method
(1.96) is greater than that of the two different normalization methods (10.44 and 2.8, respectively). In
addition, the measurement accuracy of the proposed aggregation method is greater than those of the
four different aggregation methods. Therefore, our proposed methodology can more consistently and
accurately help evaluate the overall project performance or success.
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1. Introduction

Construction companies evaluate project success by

measuring performance and comparing it with that of

other projects according to predetermined success criteria.

These criteria include schedule, cost, quality, and safety

performance; each aspect has many sub-indicators to

measure its performance (Kumaraswamy and Thorpe,

1996; Dainty et al, 2003). To evaluate the overall project

performance or success, construction companies have

developed composite indicators (CIs), in which sub-

indicators are aggregated into one index. Construction

companies commonly use a categorical scale, Z-score, or

re-scaling to normalize the values of sub-indicators with

different measures; a budget allocation to weight the sub-

indicators; and a simple additive aggregation function to

aggregate the weighted sub-indicators.

However, despite their simplicity in implementation and

interpretation, these methods do not appropriately address

their inherent problems. For instance, the categorical scale

converts the continuous values of the sub-indicators into

discontinuous categorical values, and the low resolution

measurement often impairs the performance discrimination

in the process (Hand, 2004). Although the normalized

values by Z-score or re-scaling are continuous, these

methods provide relative calibration due to their nature.

Therefore, the values obtained by these methods differ

according to project performance. Moreover, the simple

additive weighting method does not consider that the

interaction among sub-indicators can cause redundancy

(Grabisch, 1996). Developing a CI by merely adding the

weights of these indicators can lead to an incorrect

estimation of safety performance due to the redundancy

in these two sub-indicators.

We address these problems by developing a novel

methodology that applies fuzzy theories to develop a CI

for evaluating overall project performance. Specifically, we

propose the utility function as a replacement for the

categorical scale, Z-score, or re-scaling to address the

indiscrimination and relative calibration. We then apply the

fuzzy integral to aggregate the normalized sub-indicators in

order to avoid redundancy. We assess the reliability and

accuracy of the proposed approach using uncertainty

analysis. The test case is the cost performance of 25 real

projects provided by a construction company in Korea.

The rest of the paper is organized as follows. Section 2

discusses the CI of the construction project performance

and the methodologies for constructing the CI. We then

propose a fuzzy-based methodology for the CI in Section 3.

In Section 4, we demonstrate the quality of our proposed
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methodology using a Monte Carlo approach-based

uncertainty analysis. Finally, we conclude and offer some

final remarks in Section 5.

2. Review of constructing CIs

2.1. Current practice of constructing CIs

Construction companies have utilized CIs to measure and

compare their overall project performance due to their

usefulness as a communication tool (Freudenberg, 2003)

and as a decision support tool (Saltelli, 2006). Because

only overall project performance can be measured using

a CI, many researchers support the use of both compo-

site performance indicators and individual indicators

(ie, project success criteria or key performance indicators).

Lauras et al (2010) and Marques et al (2010) argue that

project managers need to quantify project performance as

a whole. Clivillé et al (2007) state that the performance

management system should involve two kinds of perfor-

mance metrics: elementary (ie, individual indicators that

represent different performance objectives) and aggregated

(ie, CIs that synthesize the elementary indicators into

global objectives). Kumaraswamy and Thorpe (1996)

suggest the use of a project performance profile composed

of principal performance criteria and corresponding sub-

criteria in a hierarchical structure. Landy and Farr (1983)

argue that combined performance data are needed, because

the availability of overall performance ratings is useful for

administrative decisions.

To develop a CI for evaluating overall project perfor-

mance, construction companies often use a categorical scale

for normalization, a budget allocation for weighting, and a

simple additive aggregation function for aggregation.

Although these methods are widely used in the development

of a CI (Saisana and Tarantola, 2002), they assume pre-

ference independence, which Nardo et al (2005) define as

‘given the sub-indicators, an simple additive aggregation

function exists if and only if these indicators are mutually

preferentially independent’. If two or more indicators mea-

sure the same system behaviour or violate the preference

independence assumption, a certain performance aspect will

be redundantly weighted (Grabisch, 1996; Freudenberg,

2003). To address this redundancy, interrelations between

the sub-indicators must be taken into account when the sub-

indicators are weighted and aggregated.

2.2. Methodology of CI construction

A CI is generally developed by developing a theoretical

framework, selecting sub-indicators, inventing a CI, testing

the robustness of the CI, and using the CIs to report the

results (Saisana and Tarantola, 2002; Freudenberg, 2003;

Nardo et al, 2005; OECD and European Commission-

Joint Research Center, 2008). Inventing a CI consists of

three steps: normalization, weighting, and aggregation.

Various methods have been developed for each step: (a)

normalization methods: a number of normalization methods

exist (Freudenberg, 2003; Jacobs and Goddard, 2004).

Standardization (or Z-scores) converts indicators to a

common scale with a mean of zero and a standard deviation

of one. Thus indicators with extreme values have a greater

effect on the CI. Re-scaling normalizes indicators to have an

identical range [0, 1] by subtracting the minimum value and

dividing it by the range of the indicator values. However,

extreme values/or outliers could distort the transformed

indicator. (b) Weighing methods: weighting schemes range

from statistical models (such as factor analysis, data

envelopment analysis, and unobserved component models)

to participatory methods (such as budget allocation or

analytic hierarchy processes). Weights usually have an

important impact on the composite value and on the

resulting ranking especially whenever higher weight is

assigned to the sub-indicators. (c) Aggregation methods:

the simple additive weighting (SAW) method, the weighted

product (WP) method, the weighted displaced ideal (WDI)

method, and the technique for order preference by similarity

to ideal solution (TOPSIS) method have also been widely

explored in CI construction (Diaz-Balteiro and Romero,

2004; Ebert and Welsch, 2004; Esty et al, 2005; Nardo et al,

2005a, b; Zhou et al, 2006; Lun et al, 2006). Although the

TOPSIS method has been rarely used to construct CIs, it

has attractive properties (Yoon and Hwang, 1995; Sinha

and Shah, 2003). These methods provide the opportunity to

choose an appropriate set of methods based on the context

of the evaluation. Researchers (Park et al, 2009; Shouke et

al, 2010; Bai et al, 2011; Cha and Kim, 2011) suggest various

CI models, which are different from the widely accepted

model in the construction industry. However, set of methods

for addressing indiscrimination, relative calibration, and

redundancy problems remains lacking.

Fuzzy theories, including the fuzzy measure and the

fuzzy integral, can be utilized to address these problems

due to their ability to model the interaction among sub-

indicators (Grabisch, 1996). The Choquet and the Sugeno

integrals are two well-known forms of the fuzzy integral.

While the Sugeno integral is based on nonlinear operators

(min and max), the Choquet integral is based on linear

operators and is a natural extension of the Lebesgue integral

(Liginlal and Ow, 2006). Many researchers apply fuzzy

theories in various disciplines such as evaluating enterprise

intranet websites (Tzeng et al, 2005) and e-commerce

strategies (Chiu et al, 2004). In the construction industry,

fuzzy theories have been used to manage uncertainties in

design performance prediction (Fayek and Sun, 2001) or

labour productivity (Fayek and Oduba, 2005). Although

these studies provide valuable insight into the relationships

between fuzzy theories and performance evaluation, they do

not explicitly address the indiscrimination and redundancy

problems in the context of construction project performance
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evaluation. Research efforts that apply fuzzy theories to

evaluate overall project performance and explain application

effectiveness are needed.

3. Fuzzy-based methodology for CI

There is a need for a novel methodology to help

construction companies develop a CI that addresses the

indiscrimination, relative calibration, and redundancy

problems by applying fuzzy theories in synthesizing multi-

ple criteria.

The proposed methodology has the following steps:

Step 1 (Normalization): To address the problem of

indiscrimination and relative calibration during the process

of normalizing the values of the sub-indicators, a utility

function is used as a normalization method to combine the

values into a composite value. The utility value is measured

in arbitrary units called utiles. The x-axis (the utility

function’s argument) is calibrated in directly measureable

units. The y-axis origin and scale (expressed in utiles or

utils) are arbitrary (Schuyler, 1996). The utility function

can help address the indiscrimination problem, because the

y-axis can also have continuous values. For the y-axis, a

0–1 scale can be used to normalize different scales of sub-

indicators without affecting the discriminating power of

these sub-indicators. This function interpolates the values

within a given category using two boundary conditions

that represent a company’s perception of the utility.

Although the use of utility functions that represent a

construction company’s preference would produce more

realistic normalization results, we use the 0–1 scale for the

utility functions for demonstrative purposes.

Step 2 (Weighting): The normalized values are weighted

using the fuzzy measure. The method used to obtain

l-fuzzy measure values for the Choquet fuzzy integral is as

follows. First, we determine gi which is the importance

measure or the contribution of each single sub-indicator

to a CI. The fuzzy measure can be used to model the

interrelation between sub-indicators. Therefore, there is no

need to include the constraint that the sum of influence of

each sub-indicator must be one. Second, we calculate the

value of l using Equation (1) given the gi determined above.

1þ l ¼ Pn
i¼1ð1þ lgiÞ; la0;�1ol ð1Þ

In addition, according to the fundamental theorem

regarding the l-fuzzy measure, l-value has the following

cases:

K If
P

i¼ 1
n gi4g(X), then �1olo0

K If
P

i¼ 1
n gi¼ g(X), then l¼ 0

K If
P

i¼ 1
n giog(X), then l40

Third, the values of normalized sub-indicator h(xi) are

listed in descending order, and we calculate the l-fuzzy

measure value of each g(Hi) using the l, gi values and

Equation (2).

gðHiÞ ¼ gðfxi; xiþ1; . . . ; xngÞ ¼
1

l
Pn

j¼ið1þ lgjÞ � 1
h i

ð2Þ

where gi¼ g({xi}), gj¼ g({xj}), Hi¼ {xi, xiþ 1, . . . ,xn}, and

i¼ 1,2, . . . , n

Step 3 (Aggregation): We suggest the use of the Choquet

integral for aggregating the sub-indicators in our proposed

methodology. The Choquet fuzzy integral, proposed by

Murofushi and Sugeno (1989), has been used in informa-

tion fusion and data mining as a nonlinear aggregation tool

(Yang et al, 2005). This method provides the computa-

tional schemes for aggregating the values of sub-indicators

based on the l-fuzzy measure described above. If h(x1),

h(x2), . . . , h(xn) are assumed to be a collection of input

sources of h, and g is a l-fuzzy measure, then the following

Choquet fuzzy integral can be constructed:Z
x

hðxÞ�gð�Þ ¼ Sn
i¼1½hðxiÞ � hðxi�1Þ�gðHiÞ ð3Þ

where x is a finite and discrete set, Hi ¼ {xi, xiþ 1, . . . ,xn},

h(x1)ph(x2)p . . .ph(xn) and h(x0)¼ 0.

Our methodology enables construction companies to

evaluate the overall project performance with higher

accuracy (ie, higher precision) by addressing the indis-

crimination problem and higher validity by addressing the

redundancy problem (Hand, 2004).

4. Quality assessment of the proposed CI

4.1. Quality assessment overview

We conduct a case study to assess the quality of the

proposed methodology for constructing a CI versus the

alternative normalization and aggregation methods. The

test case is the cost performance of 25 real projects

provided by a construction company in Korea (Table 1).

To evaluate the cost performance of each project, the

company measured three sub-indicators: the sales comple-

tion rate in percentage, the cost spending rate in

percentages, and work productivity in currency (Korean

won). The following equations were used in the process:

Sales completion rate

¼ completed sales

planned sales

¼work quantity completed� contracted unit price

work quantity planned� contracted unit price
ð4Þ

Cost spending rate

¼ paid cost

budget cost

¼ work quantity completed� paid unit price

work quantity planned�budgeted unit price
ð5Þ

S-K Lee and J-H Yu—Composite indicator development using utility function and fuzzy theory 3
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Work productivity

¼ completed work

number of staff

¼work quantity completed�budgeted unit price

number of staff
ð6Þ

In this paper, CI quality is assessed using the reliability

and accuracy of the measurement results. Measurement

reliability is defined as the consistency of a set of

measurement results. To assess measurement reliability,

we calculate the measurement reliability index of each

normalization method (Equation 7) and counted rank

inversion.

Measurement Reliability Index

¼Sn
i¼1Maxfranksig �Minfranksig
The total number of projects

ð7Þ

Here, ranki represents the rank of measurement results

for project i (i¼ 1, 2, . . . , n), and max{ranksi} means the

maximum rank among measurement results for project i

which are calculated using aggregation methods. Min

{ranksi} means the minimum rank among measurement

results for project i which are calculated using aggregation

methods.

Intuitively, the larger gap between ranks of a project

by each aggregation method means lower reliability.

If a normalization method results in a lower reliability

index, it might be considered a better reliable normalization

method.

Measurement accuracy is defined as the closeness of

measured performance results to the actual value of

performance. To measure the degree of measurement

accuracy, we conduct uncertainty analysis to compare the

performance of two projects whose ranks were different

based on the five different aggregation methods. We then

compare the project performance based on each aggrega-

tion method. The uncertainty analysis is implemented in

the software Crystal Ball 11. We limit ourselves to three

types of uncertainties: alternative normalization methods

for the values of the sub-indicators; alternative aggregation

methods; and uncertainty in the weights of the sub-

indicators. Uncertainty analysis focuses on how uncer-

tainty in the input factors propagates through the CI

structure and affects its values. Three normalization

methods for normalizing each sub-indicator (Z-scores,

re-scaling, and the proposed utility function) and five

aggregation methods for aggregating normalized sub-

indicators (SAW method, WP method, WDI method,

TOPSIS and the proposed fuzzy integral) were applied in

the present work. Tables 2 and 3 show the normalization

and aggregation functions from which the CI could be

obtained.

We use the Monte Carlo approach to evaluate the

measurement accuracy of the proposed methodology in

order to construct CI with K randomly selected input

Table 1 The three sub-indicators of cost performance in 25 projects

Project Sales completion rate (%) Cost spending rate (%) Work productivity (Korean won)

Pj1 149.10 97.70 25.61
Pj2 100.00 85.60 41.71
Pj3 140.90 100.00 12.59
Pj4 100.00 97.70 16.37
Pj5 100.00 97.40 26.63
Pj6 112.10 99.10 19.04
Pj7 100.00 98.30 27.35
Pj8 134.30 98.50 21.87
Pj9 100.00 99.00 21.00
Pj10 100.00 100.00 12.17
Pj11 100.10 96.80 16.41
Pj12 100.00 97.00 18.00
Pj13 100.00 100.00 23.64
Pj14 100.00 97.30 21.79
Pj15 84.90 99.60 19.50
Pj16 104.20 98.70 18.33
Pj17 118.50 97.40 9.61
Pj18 104.60 97.90 42.95
Pj19 100.00 97.70 25.07
Pj20 102.70 33.70 30.46
Pj21 100.00 99.00 21.79
Pj22 100.00 88.60 38.58
Pj23 105.70 100.00 16.03
Pj24 129.70 97.20 36.62
Pj25 105.40 97.60 23.20

4 Journal of the Operational Research Society
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Table 2 The implementation function for the normalization methods

Method Normalization function

Standardization

rij ¼
xij �MeanðxjÞ

StdevðxjÞ

Re-scaling

rij ¼
xij �MinðxjÞ

MaxðxjÞ �MinðxjÞ

Utility function The sales completion rate (r1): ri=0, xio85
ri=0.05 � xi�4.25, 85pxip105
ri=1, 105oxi

The cost spending rate (r2): ri=0, xio95
ri=�0.15 � xiþ 15.24, 95pxip101.67
ri=1, 101.67oxi

The work productivity (r3): ri=0, xio11.5
ri=0.1 � xi�1.15, 11.5pxip21.5
ri=1, 21.5oxi

Here, rij represents the normalized value of the sub-indicator rj for project i.

i= the project (i=1, 2, 3, . . . , 25).

j=the sub-indicator (j=1, 2, 3).

Table 3 The implementation function for the aggregation methods

Method Aggregation function

SAW

CIi ¼ Sn
j¼1wjrij ði ¼ 1; 2; 3; . . . ;mÞ

WP

CIi ¼ Pn
j¼1ðrijÞ

wj ði ¼ 1; 2; 3; . . . ;mÞ

WDI

CIi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn
j¼1ðwjrijÞ2

q
ði ¼ 1; 2; 3; . . . ;mÞ

TOPSIS

CIi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn
j¼1ðwjrij �mini fwjrijgÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn
j¼1ðwjrij �mini fwjrijgÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn
j¼1ðwjrij �maxi fwjrijgÞ2

q ði ¼ 1; 2; 3; . . . ;mÞ

Fuzzy integral

CIi ¼
Z
x

hðxÞ�gð�Þ ¼ Sn
j¼1½hðxijÞ � hðxij�1Þ�gðHiÞ ði ¼ 1; 2; 3; . . . ;mÞ

i= the project (i=1, 2, 3, . . . , 25).

j=the sub-indicator ( j=1,2, 3).
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factors X1–X5. The procedure for the Monte Carlo

approach follows (Zhou and Ang, 2009):

Step 1: Randomly generate five independent input factors

based on the PDF assigned to X1�X5, and repeat

it K times. That is, generate randomly K

combination of five independent input factors

X(t), with t¼ 1, 2, . . . ,K (a X(t) sets of input

factors generated as X1(t), X2(t), . . . ,X5 (t)

(t¼ 1, 2, . . . ,K)).

Step 2: For each set of input factors X1(t)�X5(t) (t¼ 1, 2,

. . . ,K), use the disposal rule defined in Table 4

to select the corresponding normalization and

aggregation methods, and determine the weights

for the three sub-indicators.

Step 3: For t¼ 1, 2, . . . ,K, use the normalization and

aggregation methods assigned to derive the

corresponding CI. Data for each sub-indicator

are first normalized according to the trigger X1

that is sampled from a uniform distribution

[0, 1), where 0pX1o(1/3) is used for re-scaling,

(1/3)pX1o(2/3) is used for standardization and

(2/3)pX1o1 is used for the utility function.

Second, the data for each normalized sub-indi-

cator are aggregated according to the trigger X2.

The trigger X2, with the same type of PDF as X1,

guides the selection of an aggregation method.

Finally, in the case of SAW, WP, WDI, TOPSIS,

the three values from independent uniform [0, 1]

distributions are scaled to a unit sum in order to

obtain w1�w3. On the other hand, in the case of

fuzzy integral, the degree of influence of each sub-

indicator can be determined without considera-

tion of the constraint that the sum of these values

must be one (eg w1¼ 0.3, w2¼ 0.6, and w3¼ 0.5).

Therefore, the three values are selected from

independent uniform [0, 1] distributions such as

the disposal rule in Table 4.

Step 4: Analyse the results to assess measurement accuracy.

4.2. Quality assessment results

4.2.1. Measurement reliability. To assess the measure-

ment reliability, we calculate the reliability index using

Equation (7) and count rank inversion based on each

normalization method. Our results show that the relia-

bility of the proposed normalization method (utility

function) is higher than that of the two different normal-

ization methods (Table 5).

4.2.2. Measurement accuracy. To assess measurement

accuracy, we conduct an uncertainty analysis to compare

the performance of two projects whose ranks differ

based on the five different aggregation methods. We then

compare the project performance based on each aggrega-

tion method.

Table 4 The five uncertain input factors

Input factor Definition PDF Disposal rule

X1 Trigger to select normalization method Uniform [0, 1) ½0; 1/3Þ � Z � score; ½1/3; 2/3Þ � Re� scalling;

½1/3; 2/3Þ � Utility function

X2 Trigger to select aggregation method Uniform [0, 1) ½0; 02Þ � SAW; ½0:2; 0:4Þ �WP; ½0:4; 0:6Þ �WDI;

½0:6; 0:8Þ � TOPSIS ½0:8; 1Þ � Fuzzy Integral

X3 w1 Uniform [0, 1]
w1 ¼

X3

S5
k¼3Xk

ðSAW;WP;WDI;TOPSISÞ

w1 ¼ X3 ðFuzzy IntegralÞ

X4 w2 Uniform [0, 1]
w2 ¼

X4

S5
k¼3Xk

ðSAW;WP;WDI;TOPSISÞ

w2 ¼ X4 ðFuzzy IntegralÞ

X5 w3 Uniform [0, 1]
w3 ¼

X5

S5
k¼3Xk

ðSAW;WP;WDI;TOPSISÞ

w3 ¼ X5 ðFuzzy IntegralÞ

6 Journal of the Operational Research Society
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Table 5 Comparison of the normalization method results

Comparing normalization method Measurement
reliability

Rank
inversion

Utility function
(Proposed method)

1.96 26

Z-Score 10.44 178

Re-scaling 2.80 41

S-K Lee and J-H Yu—Composite indicator development using utility function and fuzzy theory 7
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We conduct uncertainty analysis targeting six of 26 rank

inversion examples (Table 6). The histogram shown in

Table 7 represents the outcome of the uncertainty analysis

on the differences in the CI values between the two

projects. (a) Comparing performance between project 1

and project 14 (first figure in Table 7): the right-hand

region, in which project 1 performs better than project 14,

covers about 93.862% of the total area. (b) Comparing

performance between project 6 and project 16 (second

figure in Table 7): the right-hand region, in which project 6

performs better than project 16, covers about 85.816% of

the total area. (c) Comparing performance between project

11 and project 16 (third figure in Table 7): the left-hand

region, in which project 16 performs better than project 11,

covers about 77.958% of the total area. (d) Comparing

performance between project 12 and project 21 (fourth

figure in Table 7): the left-hand region, in which project 21

performs better than project 12, covers about 75.303% of

the total area. (e) Comparing performance between project

14 and project 18 (fifth figure in Table 7): the left-hand

region, in which project 18 performs better than project 14,

covers about 89.625% of the total area. (f ) Comparing

performance between project 15 and project 23 (sixth

figure in Table 7): the left-hand region, in which project

23 performs better than project 15, covers about 72.959%

of the total area.

Next, we conduct uncertainty analysis to compare

project performance based on each aggregation method

whose rank is equal to the result using the fuzzy integral.

(a) Comparing performance between project 1 and project

14, project 1 performs better and covers a larger area with

the fuzzy integral than that covered by SAW, WP, and

WDI (96.203, 95.958, 94.421, and 93.155%, respectively.

(b) Comparing projects 6 and 16, project 6 performs better

and covers a larger area with the fuzzy integral than that

covered by SAW, WDI, and TOPSIS (fuzzy integral4
SAW4TOPSIS4WDI; 95.703, 93.280, 86.640, and

75.505%, respectively). (c) Comparing projects 11 and 16,

project 16 performs better, covering about 77.958% of

the total area. (d) Comparing projects 12 and 21, project

21 performs better and covers a larger area with the

fuzzy integral than that covered by WDI (fuzzy inte-

gral4WDI; 91.609 and 61.726%, respectively). (e) Com-

paring projects 14 and 18, project 18 performs better

and covers a larger area with the fuzzy integral than

that covered by SAW (fuzzy integral4SAW; 94.034

and 93.442%, respectively). (f ) Comparing project 15

and project 23, project 23 performs better and covers a

larger area with the fuzzy integral than that covered by

SAW, and WP (fuzzy integral4SAW4WP; 84.930,

83.972, and 71.441%respectively). As a result, the mea-

surement accuracy of the proposed methodology is

greater than that of the four different aggregation methods

(Table 8).

Our results show that the proposed methodology helps

evaluate the overall project performance with a higher

degree of measurement reliability and accuracy compared

with the alternative methodology.

5. Conclusion and further research

The conventional methodology of the overall project

performance evaluation in construction organizations uses

a categorical scale, budget allocation, and simple additive

aggregation function. Combined with the characteristics of

sub-indicators of construction projects, this set of methods

causes indiscrimination and redundancy. Although many

methods for normalization, weighting, and aggregation

exist for developing a CI, an appropriate set of methods

that address these problems are yet to be developed. To

address these problems in evaluating the overall project

performance evaluation, we propose a novel methodology

that utilizes fuzzy theories. It includes the following three

elements: (1) a utility function for normalizing the values of

sub-indicators, (2) a fuzzy measure for weighting the sub-

indicators, and (3) a fuzzy integral for aggregating the

values of the sub-indicators.

To demonstrate its suitability, we assessed the quality of

the proposed methodology for constructing CIs in

comparison to conventional methodologies. In this paper,

CI quality was assessed using measurement reliability and

measurement accuracy. We calculated the measurement

reliability index using each normalization method. The

result shows that the measurement reliability of the

proposed method (1.96) is greater than that of the two

Table 6 Comparison of the project performance rank (with utility function as the normalization method)

Fuzzy integral (Proposed method) SAW WP WDI TOPSIS

Pj14Pj14 Pj14Pj14 Pj14Pj14 Pj14Pj14 Pj1oPj14
Pj64Pj16 Pj64Pj16 Pj6oPj16 Pj64Pj16 Pj64Pj16
Pj11oPj16 Pj114Pj16 Pj114Pj16 Pj114Pj16 Pj114Pj16
Pj12oPj21 Pj124Pj21 Pj124Pj21 Pj12oPj21 Pj124Pj21
Pj14oPj18 Pj14oPj18 Pj144Pj18 Pj144Pj18 Pj144Pj18
Pj15oPj23 Pj15oPj23 Pj15oPj23 Pj154Pj23 Pj154Pj23

Underline means the comparison results by proposed method equal comparison results by alternative method.
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Table 7 Project performance comparison results

Comparing project performance Certainty (%)

Pj14Pj14 93.862

Pj64Pj16 85.816

Pj11oPj16 77.958

S-K Lee and J-H Yu—Composite indicator development using utility function and fuzzy theory 9
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Table 7 Continued

Pj12oPj21 75.303

Pj14oPj18 89.625

Pj15oPj23 72.959
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tively). We conducted uncertainty analysis to compare the

performance of two projects whose ranks based on the five

different aggregation methods were different. We then

compared project performance based on each aggregation

method. Our results show that the measurement accuracy

of the proposed methodology is greater than that of the

four different aggregation methods. Therefore, the pro-

posed methodology significantly improves the reliability

and accuracy of project performance. That is, with our

proposed methodology, construction companies can more

consistently and accurately evaluate the overall project

performance or project success.

Although this research used real project performance

data, only three sub-indicators related to cost performance

on 25 projects were tested. Future research to expand the

number of projects and include qualitative sub-indicators is

required, along with taking into account different project

characteristics and investigating under- and over-estimated

projects in depth. In addition, sensitivity analysis is

required to analyse the degree to which each individual

source of uncertainty contributes to output variance.
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